KGS Spring '97 National Conference/27, March, 1997/Seoul/Korea

Analysis of load-settlement curves in embedded piles

¹⁾, Chun-Whan Cho, ²⁾, Myung-Whan Lee, ³⁾, Hun-Sung Hong, ⁴⁾, Jae-Kyung Um,

1)	(), (02) 2145-6584
2)	, Research Fellow, Piletech Consulting Engineers
3)	, Principal, Piletech Consulting Engineers
4)	, Assistant Chief Engineer, Piletech Consulting Engineers

SYNOPSIS : Although the load-settlement curve characteristics of embedded piles are different from those of driven piles, the same analysis method for their allowable loads is adopted without any considerations. According to the domestic related criteria the analysis methods of load-settlement curve have some conflicts each other and have some vague points in determining the allowable capacity from ultimate or yield capacity. This paper presents some suggestions for solving those problems by reviewing relevant materials and analyses of 42 embeded pile load test results.

Key words : Load-Settlement Curve, Allowable Capacity, Embedded pile, Failure load, Limiting

load.

1.

(1994. 11. 21)

(, 1996).

가

(

)

가

(limiting load)

3.0

가

						가		가
	(ultimat	e capacity	y)	(yield c	capacity)			
		(plunging	load)				(limiting	load)
(failure lo	oad)							
	10%				, Dav	/isson	(1972),	Chin
(1970), De Beer	, Brinch-H	ansen	(1963),	Butler and	Hoy's	(1977)		
1.	9가				(failure	e load)		
						가		Davisson
가	, Chin	가						

	가
Joshi and Sharma(1987)	

	. Fellenius(198	30)			가
3 4	(, 1986)	(3.0)	
	(2.0)		1.5		

.

3가

(, 1996)

2.5, . 10% . 가 1.5

,

10%

.

		3가			
	가		(1995)	(hyperbola)	가
		,			
(1996)					
		-		가	
		가			

-

3. -

	(1996)	57 가				-		,	
o	-	, 35% 가	가	(,	,)		65%	가
° Dav	visson 7ŀ		-	(DIN 4026)	가 가	가	,		
o	~1	, 0.1D					가	71	
				2.6					
4.		-							
4.1	-								
) 1	I.	-	(, , 가	42) 7	+ . 3		(-	
			y = x/a	ax —b	()				
			$y = ax^2$	2 + bx + c	()				

 $y = a \cdot e^{bx}$ ()

y x a, b, c

•

 1.
 42
 57%가, 40%가

 3%가
 가
 .
 0.1D

 2.
 .

 ,

.

-

,

,

.

가 . , -가 가

1.

			(m)	(ton)	(R ²)	
2	PC 400	SIP	13.0	50	0.9973	
11	PC 400	SIP	7.0		0.9856	
12	PC 400	SIP	6.0		0.9914	
15	PHC 400	SIP	13.0	80	0.9979	
16	PHC 350	SIP	4.0		0.9865	
17	PHC 400	SIP	12.4	80	0.9945	
18	PHC 400	SIP	10.0		0.9926	
23	PC 350		7.0	40	0.9751	
25	PC 400	SIP	13.4	50	0.9792	0.1D
26	PC 500	SIP	20.7	100	0.9846	
27	PC 400	SIP	13.5	50	0.9990	
28	PC 350	SIP	9.5		0.9924	
36	PHC 350	SIP	4.0		0.9993	
9	PC 400	SIP	6.3		0.9949	
13	PC 400	SIP	6.5		0.9933	
24	PC 400	SIP	8.0		0.9882	
29	PC 350	SIP	10.2		0.9959	

가 .

1.		()				
			(m)	(ton)	(R ²)	
1	PHC 350	SIP	13.0	60	0.9969	
6	PC 400	SIP	9.5	60	0.9952	
19	PC 350	SIP	14.0		0.9971	
20	PHC 350	SIP	7.5		0.9975	
21	PC 350	SIP	14.0		0.9979	
31	PC 350	SIP	8.5		0.9966	
34	PHC 400	SIP	10.2		0.9971	
37	PHC 350	SIP	8.6		0.9976	
38	PC 500	SIP	9.7		0.9983	
39	PC 400	SIP + JSP	8.5		0.9939	
41	PHC 350	SIP	8.2		0.9997	
5	PHC 400		21.5		0.94135	
3	PC 350	SIP	8.6	40	0.9943	0.1D
4	PC 400	SIP	19.0	80	0.9423	
7	ST 406 × 9t		18.0	80	0.9988	
8	PC 400	SIP	9.0	55	0.9984	
10	PHC 400	SIP	9.0		0.9927	
22	PC 400	SIP	6.5		0.9930	
30	PHC 400	SIP	13.9	80	0.9988	
32	PHC 350	SIP	10.0		0.9989	
33	PC 350	SIP	13.7		0.9997	
35	PHC 350	SIP	8.6		0.9990	
40	PC 350	SIP	10.0	60	0.9968	
42	PHC 400	SIP	13.5	60	0.9993	
43	PHC 350	SIP	7.5		0.9988	

) PC : PC PHC : PC ST :

SIP : Soil cement injected precast pile

	(1) log P-log S	(2) ds/d(log t)-P	(3) S-log t	(4) P-net.S	(5) Davisson		(6) P(0.1XD)	(7) Chin	(1)/(6)X100	(2)/(6)X100	(3)/(6)X100	(4)/(6)X100	(5)/(6)X100	(6)/(7)X100
2	86	80	100	87	88	88.2	107	112.4	80.37	74.77	93.46	81.31	82.24	95.20
11	75	Х	74.8	75	77	75.5	100	112.4	75.00		74.80	75.00	77.00	88.97
12	Х	80	116	104	92	98.0	128	142.8		62.50	90.63	81.25	71.88	89.64
15	Х	Х	80	62	44	62.0	130	185.2			61.54	47.69	33.85	70.19
16	66	Х	65	37	33	50.3	66	80.0	100.00		98.48	56.06	50.00	82.50
17	82	74	100		78	83.5	120	139.0	68.33	61.67	83.33		65.00	86.33
18	110	105	140	114	89	111.6	160	192.3	68.75	65.63	87.50	71.25	55.63	83.20
23	Х	Х	х		25	25.0	56	64.5					44.64	86.82
25	88	75	100	100	99	92.4	100	106.4	88.00	75.00	100.00	100.00	99.00	93.98
26	150	Х	150	155	151	151.5	175	204.1	85.71		85.71	88.57	86.29	85.74
27	98	Х	100	101	97	99.0	107	123.4	91.59		93.46	94.39	90.65	86.71
28	78	Х	77		74	76.3	87	99.0	89.66		88.51		85.06	87.88
36	Х	Х	65	37	17	39.7	85	Х			76.47	43.53	20.00	
9	Х	Х	х	92	76	84.0	133	136.9				69.17	57.14	97.15
13	Х	Х	32.8	34	29	33.4	87	107.5			37.70	39.08	33.33	80.93
24	66	52	66	56	48	57.6	78	85.5	84.62	66.67	84.62	71.79	61.54	91.23
29	Х	Х	41.5	27	36	34.8	46	45.0			90.22	58.70	78.26	102.22
									83.20	67.70	83.09	69.84	64.21	88.04
									9.65	5.35	15.36	18.13	21.86	7.15
x	•								•				•	•

4.2

2.

2. 1. 10% 3가 log P-log S (, S-log t) ds/d(log t)-P Davisson , DIN 4026 (0.025D) , : 0.1D) Terzaghi가 10% 0.1D Chin ($\Delta / P - \Delta$ (Chin, 1970) 2. 가 가 가 . 2. Davisson Chin 가 , • 0.1D 0.74 (/ = 2/3 가 = 0.67) , 0.1D . 0.1D Chin 가. 0.1D Chin 0.88 , 0.1D (limiting load) 가 , 2.0 3.0, , 0.1D 가 가 . 0.1D 2.7(F_s/0.74=2/0.74) 가 2.2(F_s×0.88=2.5×0.88 2.2)가 .

1.	(1986),	, pp. 191 197, pp. 306 308.	
2.	(1996),	, pp. 682 688.	
3.	, (1995), "	³³	, 11
,	4 , pp. 5 12.		
4.	, , ,	, , (1995), "	," '95
가	,	, pp. I 31 I 40.	

5. (1995), ",", Vol.12, No.6

- 6. , , , , , (1996), " ," '96 가 , , pp. 351 356
- 7. 土質工學會(1993), 土質工學會基準 杭の 鉛直載荷試方法·同解說 日本土質工學會, pp. 151 206.

8. Chin, F.K.(1970), "Estimation of the Ultimate Load of Pile not carried to Failure," Proceedings of 2nd Southeast Asian Conference on Soil Engineering, Singapore, pp. 81 90.

9. Fellenius, B.H.(1980), "The analysis of results from routine pile load tests," Ground Engineering, september, 1980, pp. 19 31.

10. Prakash, Shamsher(1990), Pile Foundations in Engineering Practice, John Wiley & Sons, Inc.,

pp. 634 676.