KGS Fall '96 National Conference/25 26, October, 1996/Seoul/Korea

Analysis of load-settlement curves in driven piles

¹⁾ Chun, Byung-Sik, ²⁾ Cho, Chun-Whan, ³⁾ Lee, Myung-Whan, ³⁾ Lee, Won-Je, ³⁾ Um, Jae-Kyung,
¹⁾, Professor, Dept. of Cilvil Engineering, Hanyang Univ.
²⁾ (), (02) 2145-6584
³⁾ (), PILETECH Consulting Engineers. (02) 3402-2361

SYNOPSIS : According to the domestic related criteria the analysis methods of load-settlement curve have some conflicts each other and some vague points in determining the allowable capacity from ultimate or yielding capacity. This paper presents some suggestions for solving the problems from reviewing relevant materials and analysis of 57 pile load test results.

Key words : Pile Load Test, Load-Settlement Curve, Allowable Capacity, Ultimate Capacity, Yielding Capacity

1.

2.

			(m)	(1		(R ²)	
	DO 050	14.05	- - - -	(ton)		0.00	
4	PC 350	K-25	5.4	40	-	0.96	
6	PC 350	K-25	4.0	40	-	0.99	
1	PC 350	K-25	7.4	40	-	0.99	
15	PC 400		11.5	60	-	0.99	0.1D
16	PC 350	K-25	7.0	40	_	0.99	0.10
32	ST 406.4, 9t	K-25	48.1	70		0.99	
18	PC 400	6 ton	7.0	60	_	0.98	
23	PC 400	K-25	22.6	60	-	0.99	
34	PC 350	K-25	3.8	40	_	0.99	
35	PC 350	K-25	5.4	40	_	0.99	
36	PC 350	K-25	5.4	40		0.99	
37	ST 508, 12t	K-25	7.3	100		0.99	
38	PC 350	K-25	6.0	40		0.99	
39	PHC 400	S-60	7.5	70		0.99	
40	PC 350	K-25	18.0	40		0.99	
41	PHC 400	K-35	16.9	70		0.99	
42	PC 400	K-25	11.2	50	-	0.99	
43	PHC 500	S-60	10.3	100	-	0.99	
45	ST 812.8, 16t	K-45	49.81	150	-	0.99	
46	ST 406.4, 9t	K-25	52.1	80	-	0.99	0 1D
47	ST 406.4, 9t	K-25	23.0	80	-	0.99	0.112
48	PHC 400	K-35	25.4	60	-	0.99	
49	PHC 450	K-35	17.5	70	-	0.99	
50	PHC 400	K-35	8.3	60	-	0.99	
51	ST 609.6. 12t	K-35	10.7	133.9	-	0.99	
52	PC 350	K-25	8.0	40	-	0.99	
53	ST 609 6 12t	K-45	14.83	133.9	-	0.00	
54	PHC 500	K - 35	7 75	90	-	0.99	
55	PC 400	K-25	21.9	60	-	0.00	
56	ST 508 10t	K - 35	43.2	110	-	0.00	
57	PC 350	K - 25	7.5	40	-	0.00	
1	PC 350	K - 25	5.0	40		0.99	
2	ST 508 10t	K - 25	9.6	100	-	0.00	
2	ST 406 4 9t	K-25	10.5	62	_	0.99	
5	ST 609 6 12t	K-25	11.7	140	_	0.99	
8	DC 350	K-35	7 1	40	-	0.99	
0	PC 350	K-25	7.1	40	-	0.99	
9 10	PC 350	K-25	9.0	40	-	0.99	
10		K-25	10.0	40 50	-	0.99	
12		K-35	19.0	30	-	0.90	
12	PC 350	K-25	10.1	40	-	0.96	
13	PC 350	K-25	0.2	40	_	0.98	
14	PC 400	5100	13.5	60	-	0.98	0.1D
19	PC 400	K-25	10.1	60	-	0.99	
20		K-25	12.5	60	-	0.99	
22	ST 812, 12t	K-65	51.5	150	-	0.98	
25		S-35	25.3	60	-	0.99	
27	SI 711.2, 9t	K-35	19.4	140	-	0.98	
28	PC 350	K-25	14.7	40	4	0.96	
29	PHC 400	K-35	18.8	60	4	0.99	
30	PHC 400	K-35	26.7	60	-	0.99	
33	PC 400	K-25	11.8	50		0.99	

) PC : PC

ST :

PHC :

PC

K : Kobe

- 1

-1 -

-2														
	(1) log P-log S	(2) ds/d(logt)-P	(3) S - log t	(4) P-net. S	(5) Davisson		(6) P(0.1*D)	(7) Chin	(1)/(6)*100	(2)/(6)*100	(3)/(6)*100	(4)/(6)*100	(5)/(6)*100	(6)/(7)*100
4	60	65	70	-	58	63.25	88	96	68.18	73.86	79.55		65.91	91.67
6	x	50	40	38	23	37.75	76.8	98		65.10	52.08	49.48	29.95	78.37
7	х	44	40	44	34	40.50	70	73.5			57.14	62.86	48.57	95.24
15	50	55	60	64	60	57.80	87.4	93.4	57.21	62.93	68.65	73.23	68.65	93.58
16	50	70	60	66	66	62.40	100	104.2	50.00	70.00	60.00	66.00	66.00	95.97
32	270	х	247	230	286	258.25	222	454.5	121.62		111.26	103.60	128.83	48.84
2	158	162	150	170	156	159.20	214	227.3	73.83	75.70	70.09	79.44	72.90	94.15
3	90	118	124	111	113	111.20	140	144.9	64.29	84.29	88.57	79.29	80.71	96.62
5	215	240	245	228	230	231.60	280	294.1	76.79	85.71	87.50	81.43	82.14	95.21
8	40	х	30	42	42	38.50	50	51.8	80.00		60.00	84.00	84.00	96.53
9	52	48	60	54	54	53.60	67	69.9	77.61	71.64	89.55	80.60	80.60	95.85
11	100	110	112	107	76	101.00	125	172.4	80.00	88.00	89.60	85.60	60.80	72.51
12	85	78	90	83	82	83.60	93	95.2	91.40	83.87	96.77	89.25	88.17	97.69
13	80	80	80	81	67	77.60	97	105.26	82.47	82.47	82.47	83.51	69.07	92.15
19	90	110	112.1	104	94	102.02	124.5	136.9	72.29	88.35	90.04	83.53	75.50	90.94
20	98	96	112.1	103	101	102.02	112.1	117.6	87.42	85.64	100.00	91.88	90.10	95.32
22	550	530	607.3	520	470	535.46	607.3	666.7	90.56	87.27	100.00	85.62	77.39	91.09
25	140	х	135	140	134	137.25	150	175.4	93.33		90.00	93.33	89.33	85.52
28	х	26	33.2	33	34	31.55	45.7	47.2		56.89	72.65	72.21	74.40	96.82
33	100	83	99.7	100	92	94.94	99.7	105.3	100.30	83.25	100.00	100.30	92.28	94.68
1	30	43	50	46	42	42.20	66	69.4	45.45	65.15	75.76	69.70	63.64	95.10
10	55	67	70	67	66	65.00	86	94.3	63.95	77.91	81.40	77.91	76.74	91.20
14	75	50	60	68	67	64.00	114	121.9	65.79	43.86	52.63	59.65	58.77	93.52
29	110	115	140	146	140	130.20	180	212.8	61.11	63.89	77.78	81.11	77.78	84.59
30	160	150	160	167	168	161.00	200	263.2	80.00	75.00	80.00	83.50	84.00	75.99
27	250	238	277	287	282	266.80	342	370.4	73.10	69.59	80.99	83.92	82.46	92.33
							76.38	74.56	80.56	80.04	75.72	89.67		
									16.92	11.65	15.66	12.18	17.56	10.64
λV	•													

4.

가

-2	- 1	10 %

t)-P , logP-logS)	Davisson	3가 (S-log t , DIN 4026	, ds/d(log (
0.025 D) , 10 % (0.1 D $\Delta/P - \Delta$ (Chin, 1970)	: 0.1D) Terzaghi가	Chin
-2 Davisson		가 가 가	가 .

0.1D

Davisson .

0.75 , , 0.1D 0.1D Chin

가 . 0.1D , 0.1D 0.91

(limiting load) 가 . ,

2 3,

가

,

-

(

가

Chin

/

=2/3=0.67)

.

0.1D

. 0.1D 2.6(2/0.75) 가 .

- 1. (1986), , pp191 197, pp306 308.
- 2. , (1995), "

, 4 , pp5 12.

- 3. (1995), " -
- , pp26 33.
- 4. (1996), , pp682 688.
- 5. Chin, F.K.(1970), "Estimation of the Ultimate Load of Pile not carried to Failure," *Proceedings* of 2nd Southeast Asian Conference on Soil Engineering, Singapore, pp81 90.

,"

,"

11

6. 土質工學會(1993), 土質工學會基準 杭の 鉛直載荷試方法·同解說 日本土質工學會, pp.151 206.